

(mirrors partly removed)

Fraunhofer IPMS has developed a novel Tip-Tilt Micro Mirror Array (MMA) for applications in optical beam steering.

Optical Beam Steering

The device consists of 512 x 320 individually addressable mirrors at 48 μm pixel size. The actuators are designed to provide a 2 axistip-tilt motion allowing a continuous, analog deflection of up to 3.5° in arbitrary directions, fully calibratable at standard deviations of better than 0.025°. They are realized within a 2-level architecture with 4 suspending flexure

beams underneath and the mirror on top. Fabrication is done by surface micromachining in a fully CMOS compatible process.

The mirrors are electrostatically activated by 4 underlying address electrodes. The required drive voltages are fed in via an integrated CMOS backplane supporting re-programming rates of up to 3.6 kHz. For data transfer and control also an external drive electronics has been developed comprising a main unit and a satellite board hosting the MMA chip.

Forschungsfabrik Mikroelektronik Deutschland

Contact

Dr. Andreas Gehner +49 351 8823-106 andreas.gehner@ ipms.fraunhofer.de

Fraunhofer Institute for Photonic Microsystems IPMS Maria-Reiche-Str. 2 01109 Dresden

www.ipms.fraunhofer.de

Ceramic-packaged 48 µm, 512 x 320 Tip-Tilt Micro Mirror Array

Complete system: Micro mirror chip with external drive electronics

Working Principle

The optical working principle relies on a pixel-wise re-distribution of light. Each mirror creates a beamlet that can be positioned arbitrarily within the focal plane of a subsequent lens. This might be used for a simple redirection of light beams or for the formation & control of variable 2D intensity profiles, patterns or shapes. Since there are no blocking or filtering elements involved, a higher light efficiency (higher brightness using lower powers) is facilitated.

Possible Applications

- Laser Beam Shaping
- Laser Spot Tracking
- Programmable Illumination
- Laser Material Processing: Laser Ablation, Engraving or Cutting

Examples of generated 2D intensity patterns

Optical principle: pixelwise redirecting of light

Key Parameters

Parameter	Value	Remark
Array Format	512 x 320	optional: 342 x 213
Pixel Size	48 μm	optional: 72 μm
Array Area	2.5 x 1.5 = 3.8 cm ²	
Deflection Range	3.5° in any direction	
Acccuracy (1 σ)	< 0.025°	
Fill Factor	> 92%	
Reflectance	> 85% (DUV - IR)	wavelength-tuning possible
Light Power Density	< 50 W/cm ²	typical range*
Chip Frame Rate	3.6 kHz	
Chip Power Dissipation	10 W	
Ext. I/F Data Rate	20 Hz	upgrade option to 3.6 kHz

^{*:} actual value may differ depending on specific irradiation conditions