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Abstract

Recently, deep neural networks (DNNs) have proved their success in perform-
ing various tasks at high accuracy. However, these networks come at a high
cost of computational and memory requirements and with the continuously
growing neural networks sizes, conventional von Neumann accelerators hit
the memory wall. Processing-in-memory (PIM) acceleration is heavily inves-
tigated to deliver the aforementioned requirements with a great potential to
further accelerate these application and meet the possible future needs. In this
chapter, we explore the state-of-the-art, challenges and future possibilities of
the PIM based DNN accelerators. First, we explore various volatile and non-
volatile memory cells that are commonly used for PIM architectures. Second,
we discuss the possible approaches to design a PIM accelerator (digital, ana-
log, mixed-signal processing). Third, we investigate the operational accuracy
these architectures are offering, the requirements these architectures enforce
when it comes to the inferred network quantization. Finally, we conduct an
extensive comparison between these architectures.
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5.1 Memory Technologies

5.2 In-Memory Architectures

5.2.1 Volatile Memories

For many years, the main memory cells to provide storage space for any
computational process were volatile memories. Volatile Memory is called the
memory which retains the data only as long as there is power supplied. The
most common volatile memories are the dynamic random access memory
(DRAM) and the static random-access memory (SRAM).

An SRAM cell is constructed from two transistors and four more transis-
tor forming two cross-coupled inverters storing one single bit (Figure 5.1).
The SRAM cell is preferred among the volatile memories due to its low
access time and high performance comparing with the DRAM of which the
threshold voltage of the access transistor is very high [1]. However, SRAM is
considered as en expensive memory and dominates a high amount of area
in a digital chip and also the total chip leakage current [2]. Although, in
advanced technologies, the decreased VDD can lower the leakage current, the
storage capacitance of a bitcell SRAM is reduced and soft error rate (SER)
is introduced [3]. Moreover, with respect to the NVM, it lacks of high power
efficiency and exposes higher read delay, for higher temperature [4]. SRAM
cell is often used as the main memory cell where the MAC operations are
performed [5], [6].

At the moment, DRAM is the most popular type of memory when design-
ing an AI accelerator and needing memory storage. Its simple design consists
of a transistor and a storage capacitance (Figure 5.1). The need for very large
and dense quantities of memory, led to the usage of DRAM to be the main off-
chip memory [7]. The cost of the DRAM cell is less than the SRAM, but the
DRAM memory needs a circuit to periodically refresh the memory since the

Figure 5.1 Conventional volatile memory cells a) 6T SRAM cell and b) DRAM cell.
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capacitance needs to be discharge also, DRAM’s capacitance leaks current
and the data has to be transferred at the main chip, so higher latency and
power needed [7]. Recent studies has designed new techniques to compensate
those effects like the time minimization of the DRAM access [8] or the
latency in sense of energy per access [9]. Nevertheless, the biggest concern of
the DRAM memory seems to be the scaling limit with the newer technologies
and the smaller sizes of the transistor [10].

5.2.2 Non Volatile Memories

The aforementioned disadvantages of the volatile memories lead the
researchers to investigate another type of memories, the non volatile
memories (NVM). These memories have the ability to retain the data even
if the power supply is disconnected. They present high power efficiency with
respect to the volatile memories and low latency since the network’s opera-
tions happen inside the memory. Although the low cost and high density, they
may present some reliability issues like data retention and finite endurance,
resulting in high bit-error-rates (BER) in the stored weights [11]. Recent
studies have showed some solutions for the BER problem like error correction
code (ECC) [12, 13], but these techniques demand high power during the read
operation which can not be compatible with the new edge technologies. Some
of the most popular NVM are the flash memory, the resistive random-access
memory (ReRAM or RRAM) and the ferroelectric RAM (FeRAM, F-RAM
or FRAM).

A Flash memory cell is simply a MOSFET cell, except that a polysilicon
floating gate (or a silicon nitride charge trap layer) is sandwiched between a
tunnel oxide and an interpolyoxide to form a charge storage layer [10]. The
floating gate is used to store the data and it provides programming and erasing
process. However, the Flash memory lacks of scalability since a conventional
Flash type of memory needs a tunnel oxide layer thickness of 8nm to avoid
charge loss and maintain the data (data retention) for 10 years [14]. As a
result, a reduction of device dimension could cause threshold voltage shift,
retention, endurance and dielectric leakage [10, 15].

The ReRAM cell consists of one Memristor and one transistor. Memristor
is a device which acts as a programmable resistance, so the voltage level of
the transistor can be determined. This voltage level represents the state/value
of the weights in a neural network. However, concerning to the power
consumption, the ReRAM presents gate leakage and relatively high power
consumption for low latency and vise versa [4]. Moreover, a significant effect
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which should be taken into consideration when designing a NN accelerator
with ReRAM, is that for any small variation of the Vth, the write delay is
increased exponentially [4].

In order to avoid the ReRAMs high write power and long read latency (RC
delay), studies focused on FeRAM as one popular upcoming technologies for
NVM [16]. It is firstly introduced in [17] where ferroelectricity in silicon
doped hafnium oxide (Si : HFO2) is presented as a high scalable and
complementary metal-oxide semiconductor (CMOS) compatible technology
(ferroelectric field-effect transistor - FeFET). It consists of a transistor and a
capacitor structure which gives the transistor the ability to be programmed
and erased in different levels with respect to its Vth It has already been
integrated into various CMOS new edge technologies [18, 19] and it presents
low device-to-device variation. One disadvantage of the FeFET is that during
the read operation, a leakage current can be detected which is involved to a
small writing pulse to each cell [10]. It is a fast memory (higher read speed
than Flash and SRAM memory) with high endurance and low hold power
making FeFET a competitive technology of NVM.

In this section, we review the different design trends in the field of
in-memory computing architectures based on different memory technolo-
gies and targeting various neural networks. The different architectures
are explored according to their computational domain, flexibility and pro-
grammability, used technology, target networks and their representation and
finally the reliability and accuracy of the computations.

5.2.3 Computational Domain

As In-memory architectures main idea is to perform the target operation
in memory by leveraging the memory cell properties in the analog domain
or in more digital approach. However, pure analog domain usually targets
neuromorphic computations which is not the main scope of this survey. In
this section, we will be exploring two main trends in In-memory architecture;
the mixed signal based architectures and digital based architectures. For each,
we will investigate the possible advantages and disadvantages each is offering
as well as the potential each hold for future applications.

5.2.3.1 Mixed signal approach
In this approach, the main computation is realized by using the analog
properties of the memory cell within the memory crossbar or sub-array. As
shown in Figure 5.2, the min idea here depends on storing the weight value
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Figure 5.2 General concept of mixed-signal in-memory crossbar (A) The digital activation
of the computed layer. (B) DACs convert the digital input into an analog signal to be applied to
the memory cell. (C) Memory cell storing the kernel value of the currently computed layer. (D)
The summation line which accumulates the result signal out of the memory cell representing
the operation results. (E) ADCs convert back the result into the digital domain for any further
processing.

within memory cell and using a digital to analog converter (DAC) to represent
the input feature value as an applied voltage. The result of such multiplication
operation between the input and weight values are represented by the output
signal of the memory cell as explained previously. Based on kirchhoff law,
the result of different multiplications along the BL is accumulated and finally
forwarded to the analog to digital converter (ADC) unit that yields the final
result of the performed MAC operations.

Several architectures [20], [21] adopt this crossbar organization as their
main processing element. This structure became a very popular crossbar
structure because of its very high throughput as well as matching the domi-
nant MAC operation. However, this approach holds couple of drawbacks as
it requires a number of ADCs and DACs which reflects on the chip area and
the power consumption of the overall processing element. These components
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Figure 5.3 Eliminated the DACs and instead serialize the activation by applying only a
single bit at each cycle [24].

can amount up to 23% and 61% of the system area and power respectively
as shown in [22] or in extreme cases up to 99% and 85% as in [23]. To limit
these drawbacks, several architectures [24], [25] eliminated the DACs and
instead serialize the activation by applying only a single bit at each cycle
as shown in Figure 5.4. This approach also reduce the ADCs size as the
accumulated analog value is also smaller. However, this approach requires
more cycles to perform single operation (usually number of cycles equivalent
to the activation precision.),

Another approach to limit such drawback was to adapt a bit decom-
position approach by either decomposing the activation as the previously
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Figure 5.4 (a) Several row activation approach such as Ambit’s TRA [28]. (b) Changing
subarray unit cell structure whether with extra transistors or operation mode as in DRISA
3T1C [29]. (c) Activating only one row at a time and use the row activation as an operand as
in FlexPim [28].

mentioned approach or by decomposing the weight stored as well [26], [27].
In this approach, a compromise between the number of cycles needed and the
size of ADCs and DACs is investigated to balance the throughput, area and
power of the architecture.

5.2.3.2 Digital approach
Another way for in-memory computation is adapting a completely digital
approach. Such structure depends on either decomposing both the weights
and activations completely or quantizing the parameters to binarized repre-
sentation. This in return converts the MAC operation into bulk logical bitwise
operations that need to be followed by additions, shiftings and comparisons.
The memory cells are usually used to perform the bitwise operations and
the rest of operations are done by supporting computational blocks. Several
architectures realize the bulk operations as shown in Figure 5.4 through
parallel sub-array activations representing the operands [28] or through single
row activation based on one of the operands [29], [30]. Another realization is
possible through modifying the cell to perform the target logical operation as
in [31], [32].
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Figure 5.5 The relation between the energy cost for digital and analog MAC operations
versus bit precision. [33].

Compared to the mixed signal approach, this approach allows for high
speed due to the eliminations of the analog blocks as well as high power
efficiency. However, the decomposition of the MAC operations reflects on
the operation latency. Also, low bit quantization limits the architecture usage
to neural networks models that can tolerate such quantization.

5.2.4 Target Network Quantization

In this section, we investigate the possible targeted neural network weights’
quantization and representation. Ranging from floating point representation
to binary representation, wide range of presented architectures has been
offered with each targeting a specific representation or in some cases try to
be flexible and target several possible weights’ quantization. As highlighted
in earlier sections and shown in Figure 5.5, such network properties affect
directly the architecture choices such as the computational domain, selected
technology, etc but also it is reflected on the network accuracy and possibility
of using the architecture for training as well as inference.

5.2.4.1 Floating point architectures
Floating point representation is considered as the most accurate form of the
targeted network since it is usually the representation used during the training
and design phase. Architectures targeting such representation are usually
used for training mainly [34], [35]. The main advantage such architectures
are offering is the elimination of accuracy loss from network representation.
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Also, these architectures targets the largest range of networks as the only
limitation in that case is the support of network layers type or not.

However, these architectures are usually suffer from a trade off between
high power consumption or lower throughput. Depending on the design
choices, generally expensive power blocks are used which maintain high
throughput on the expense of high power consumption. This makes them
way efficient when compared to general purposed computing devices such as
graphic processing units (GPUs) but losing the edge compared to low power
ASIC designs.

5.2.4.2 Fixed-point architectures
Architectures targeting fixed-point weight representation are the most popular
among in-memory architectures. Due to advanced neural network optimiza-
tion techniques [36], [22], weights can be represented using fixed-point
precision as low as 4-bit in large complex networks. With such low rep-
resentation, these architectures store the weight in the memory cell which
boost the system throughput and performance as shown previously. However,
such architectures suffer from several drawbacks related to accuracy losses
that can occur due to sever compression. Also, such representation limit the
usage of these architectures in training related tasks and confine them more
to inference based tasks.

5.2.4.3 Binarized architectures
Motivated by the extremely reduced memory/computational requirements
with marginal degradation in accuracy for some networks [37], [38], several
architectures are built to target binary/ternary operations. In these architec-
tures [39], [5], the main operation performed by the memory cell is usually
very simple logical operation. Also, these architectures reduce the memory
cell irregularities to the minimum as each cell stores a single bit.

However, the binarization limits the architecture usage to a limited num-
ber of networks that can currently adopt such representation. The main
argument these architecture is dependant on is the consistent advance in the
binarization techniques that can allow for more networks to be using such
architecture.

5.2.4.4 Flexible precision architectures
A recent popular growing trend is to target various representations simultane-
ously where these representations can range from binarized to full precision
floating point as in [26], [30]. In these architectures, the weights and inputs
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precision can be traded for either higher throughput or reduced power
consumption.

Most of these architectures depend on weight bit decomposition or input
serialization explained earlier. Such flexibility allows for the use of these
architectures for a wider range of networks and for both inference and training
purposes. However, such flexibility comes with a cost compared to fixed
representation architectures. For example in [29], to achieve such flexibility,
a hierarchical network on chip is required which adds extra hardware either
to the chip busses or the complexity of the chip control.
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